Circle the vector that translates the point (-2, 7) to the point (3, -1)

[1 mark]

$$\begin{bmatrix} 3 - (-2) \\ -1 - 7 \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ -6 \end{bmatrix}$$

$$\begin{pmatrix}
5 \\
-8
\end{pmatrix}$$

$$\begin{pmatrix}
-5 \\
8
\end{pmatrix}$$

$$\begin{pmatrix} -5 \\ 8 \end{pmatrix}$$

$$\begin{pmatrix} -5 \\ 6 \end{pmatrix}$$

1

2 Write down the translation vector that maps shape A onto shape B.

[2 marks]

Answer
$$\begin{pmatrix} 4 \\ -3 \end{pmatrix}$$

3 Here is a sketch of $y = x^2$

is now transformed to give $y = (x + 3)^2$ 3 (a)

Describe fully this single transformation.

[2 marks]

Translation with vector (3)

Triangles ABC and DEF are shown on a grid.

Describe a single transformation that shows the triangles are congruent.

[2 marks]

[2 marks	$Vector \begin{pmatrix} 6 \\ 4 \end{pmatrix}$	unstation of	Tr
	0	0	

5 The vector $\begin{pmatrix} -3 \\ 7 \end{pmatrix}$ translates A to B.

Write down the vector that translates B to A.

[1 mark]